Scientist Spotlight: Cecilia Payne-Gaposchkin

One woman actually changed the universe, or at least how we see it. Cecilia Payne-Gaposchkin, born in England in 1900, was an astronomer and astrophysicist.

She began at the University of Cambridge in 1919 and a lecture about Einstein’s Theory of General Relativity inspired her to study astronomy.  Believing that the United States offered more opportunities to women, in 1923 Cecilia moved from Cambridge, England, to Cambridge, Massachusetts, to study at the Harvard College Observatory.

When Cecilia began at Harvard, many scientists believed the composition of stars was similar to that of the Earth. The scientists saw seven different absorption patterns, which led them to believe there were seven different stars, with varying combinations of the same elements found in Earth’s crust.


Photo courtesy of Harvard Square Library

Cecilia was not so quick as to agree with these conclusions. She proposed the seven patterns corresponded to different temperatures. With her background in quantum physics, Cecilia was able to apply her knowledge about ionization. Higher temperatures caused ionization, which meant ions of the same atoms with different absorption patterns. She knew the extremely hot temperature of the Sun would cause the atoms to ionize, and that these excited states would show up as different absorption lines on the spectra. Using the equations created by Indian astrophysicist Meghnad Saha, Cecilia discovered the sun was made of mostly hydrogen and helium.

Astronomer Henry Norris Russell was wary of this conclusion and persuaded Cecilia to not include it in her thesis. In her 1925 Ph.D. thesis, “Stellar Atmospheres”, Cecilia determined stars are mostly composed of hydrogen and helium but added a note that she was probably wrong.


Photo courtesy of FeedBox

Despite the controversy, Russian astronomer Otto Struve called her thesis “undoubtedly the most brilliant Ph.D. thesis ever written in astronomy.” Cecilia received her Ph.D. in astronomy from Radcliff College (now Harvard College Observatory) because Harvard University did not grant doctoral degrees to women at the time. Harvard also did not recognize female professors, so for many years, Cecilia settled with being a technical assistant. In 1956, Cecelia finally became the first female professor and the first female department chair at Harvard.

Four years after Cecilia’s thesis was published, the dissenter Russell admitted Cecilia was correct in her theory, and even published how own paper on it. However, this recognition was too late.

Cecilia never received enough credit for her ground-breaking work in astronomy, but her feats did not go completely unnoticed. Ironically enough, Cecilia was awarded the Henry Norris Russell Lectureship of the American Astronomical Society in 1976, 20 years after Russell’s death. Cecilia also has an asteroid and telescope named after her.

Cecilia’s work ushered in a new era in astrophysics, and we have her to thank for much of what we currently know about stars. Being a young woman, many older scientists were threatened by Cecilia, but she did not let that stop her. In her speech accepting the Henry Norris Russel Prize, Cecilia explains, “The reward of the young scientist is the emotional thrill of being the first person in the history of the world to see something or to understand something. Nothing can compare with that experience… The reward of the old scientist is the sense of having seen a vague sketch grow into a masterly landscape.”

More about Cecilia:

Women in Science: 50 Fearless Pioneers Who Have Changed the World, Rachel Ignotofsky


Scientist Spotlight: Mary Agnes Chases

Many people enjoy USDA approved meats, but few think about where the meats come from, or how the animals are fed. Botanist, suffragist, and illustrator Mary Agnes Chase determined the best grass to feed livestock, in addition to authoring many books on plants and studying commercially developed grass strands.

Despite not having an extensive formal education background, Mary became one of the world’s greatest agrostologist or grass expert for those of us who didn’t know there was such a thing. Mary was born in 1869 in Chicago, and began working odd jobs in stockyards, grocery stores, and a newspaper right after grammar school to help support her family. She did not let her responsibility hinder her passion, however, and she took trips to sketch plants and spent her spare change to take botany classes at the University of Chicago and Lewis Institute.

Botanist Reverend Ellsworth Jerome Hill mentored Mary, and in exchange, she illustrated his papers. Mary submitted two Chicago Field Museum of Natural History publications and landed a part-time job at the museum. There, she learned how to use a microscope and do technical drawings, and soon became a full-time illustrator for the United States Department of Agriculture for a salary of $720 per year.

For over thirty years at the USDA, Mary worked with Albert Hitchcock. The pair collected and classified plants in North and South America. They also researched commercially developed grass strains and assured they were properly advertised. Thanks to their work, we know more about our food and its production.

Hitchcock died in 1935, but Mary continued her studies in


Photo courtesy of Smithsonian Institute

agrostology. She was promoted to Senior Botanist in Charge of Systematic Agrostology. As a female, Mary was denied funding to travel but that did not stop her from traveling around the United States and South America to collect species from over 12,200 plants. She paid her own fare for many of the trips and donated her collections to the Smithsonian and National Herbarium. Mary independently wrote and illustrated the first book of grasses called The Structure of Grasses Explained for Beginners. Mary also coauthored many other books, even when she was over ninety years old.

Mary’s career did not stop at grass – she was extremely active politically. She was involved in the NAACP, National Women’s Party, and the Women’s International League for Peace and Freedom. In 1918, she was jailed for participating in the hunger strike and was almost fired from the USDA. Even after woman gained the right to vote, Mary opened her Washington D.C. residence to Latin American botanists to stay while they learned in the United States. Her house became known as “Casa Contenta.”

Mary left a legacy, both in agrostology and politics. She was given an honorary degree from the University of Illinois and was an honorary fellow at the Smithsonian Institution, and a fellow at the Linnean Society of London.  Mary’s passion for grass may be unique, but without her curiosity, our food industry, and knowledge of grass, in general, would be deficient.

For more on Mary:

Women in Science: 50 Fearless Pioneers Who Have Changed the World, Rachel Ignotofsky

Scientist Spotlight: Alice Ball

I am going to ask you right now to take out your Bible (if you have one) and to open to Number 5:2, now go to Deuteronomy 24:8-9, next 2 Kings 7:3, then Leviticus 24:4. Let’s move on to the New Testament. Try Matthew 8:1-8, followed by Luke 17:12-19. At this point, you may be asking yourself why is she having us look up Bible verses, on a science blog no less?!? Well, if you looked at the Bible verses (which I don’t think the majority of you did) did you notice what they all mentioned? Leprosy. Yep, the disease that mentioned in the Bible more than 20 times, the disease that forced people to live in leprosy colonies, the disease that made people look like they were straight out of a horror film.

I have to say, that was a much larger introduction than I normally do and I commend you if you stuck through it with me. As you may have told from the title, this post is about Alice Ball, and you will see what that Bible-leprosy search was about in a minute.

Alice Ball was born in Seattle on July 24, 1892. While spending time with her grandfather is his photography studio, she was awed by chemistry.

Alice graduated from the University of Washington in 1912 with a degree in pharmaceutical chemistry and in 1914 with a degree in pharmacy. At this time, she published a 10-page article in the Journal of the American Chemical Society. An impressive accomplishment given her age and gender. Also in 1914, Alice began studying at the College of Hawaii (later University of Hawaii) as a graduate student in chemistry. In June of 1915, she became the first African American AND the first woman to graduate with a master’s degree from the University of Hawaii.

Here’s where this lies into leprosy (Hansen’s disease). During the early 1900s, the disease was spreading its horrible skin lesions and numbness. Though we are still not sure how exactly it spreads, we now know it’s not contagious. However, 100 years ago, the police isolated the sick on the Kaluaupapa leper colony on the Hawaiian island of Molokai. There were also colonies in other parts of the world like Europe, the Caribbean, and India. The last colony that still exists is in Romania and had 19 lepers in 2011.

While Alice was in school, the only way to treat leprosy was the thick and sticky chaulmooga oil that couldn’t mix with water. The oil was difficult and ultimately ineffective if injected. Rubbing or swallowing it was equally unsuccessful. Alice was assigned on a project to research the effects of the oil. She figured out a way that the oil could be combined with water for a successful injection. The way of treatment she discovered has become the “Ball Method.” The Ball Method was widely used until the 1940s and even some remote areas used it as recent as 15 years ago.

Alice’s work treated many people who were burdened with leprosy and allowed them to rejoin their family and friends. Unfortunately, Alice died in 1916, at the age of 24. She was thought to have inhaled chlorine gas.

Although Alice was never able to really see the fruits of her labor, she accomplished something that was taking others hundreds of years out figure out. Her short life provided a long and lasting impact for the future of leprosy. The University of Hawaii honored her with a plaque on a chaulmoogra tree and in 2007 awarded her the Regents Medal of Distinction. In 2000, he Governor of Hawaii declared February 29 “Alice Ball Day.”

Women in Science: 50 Fearless Pioneers Who Have Changed the World, Rachel Ignotofsky

Scientist Spotlight: Rosalyn Yallow

Anyone will tell you hard work and persistence pays off. Nothing was more true for Rosalyn Yalow. Born in 1921, Rosalyn began reading in preschool. Her parents knew she’d go far, but thought it’d be best for her to be a schoolmistress. Rosalyn, however, had bigger dreams. She persisted in her plan to become a physicist and eventually won the Nobel Prize in 1977.

Rosalyn’s love of chemistry began in high school but at Hunter College her interests shifted to physics. In her junior year, she hung from the rafters so she could hear physicist Enrico Fermi speak in a packed lecture room. Rosalyn was excited to one day become a physicist and possibly win a Nobel Prize.

Her path to scientific fame wasn’t clear-cut, however. Rosalyn’s family did not think any graduate school would accept and/or offer financial aid to a woman pursuing a degree in physics. Nonetheless, Rosalyn and her advisors persisted and the University of Illinois offered Rosalyn a teaching assistantship in 1941. She was the only woman on a faculty of 400 professors and teaching assistants. At the University of Illinois, Rosalyn earned her master’s degree and PhD.

After completing graduate school in 1945, Rosalyn began working at the Veterans Administration Medical Center in the Bronx to determine how to use radioisotopes in medicine. With little funding, Rosalyn relied on innovation and converted an old janitor’s closet to one of the nation’s first radioisotope labs. Rosalyn worked closely with her lab partner, Solomon Berson, and discovered how radioactive isotopes could measure blood, study metabolism, and diagnose diseases.


Rosalyn in her lab in the Bronx.

However, these discoveries were just the beginning of the duo’s collaboration. They soon applied their methods to hormones, creating the radioimmunoassay technique (RIA) by tagging hormones with a radioactive isotope and measuring the amount of antibodies created. The RIA technique is still used today to check for many different diseases and medical issues. Doctors use RIA to screen unborn babies for fatal diseases, detect thyroid issues, and assure blood banks are safe and clean.

Solomon and Rosalyn used their RIA method to research diabetes, an endocrine gland disorder that affected Yalow’s husband. The two scientists discovered how insulin


Rosalyn works with isotopes for her research.

worked in the body and determined the difference between type 1 and type 2 diabetes. The precision of RIA and the discoveries of Solomon and Rosalyn revolutionized endocrinology and has allowed doctors to better treat hormonal diseases.

Solomon died of a heart attacked in 1972, and Rosalyn was devastated. She lost her best friends and her lab partner. Rosalyn realized she needed to prove herself now that she was a lone woman in the scientific sphere. She worked hard and published over 60 research articles in only 4 years. Rosalyn never gave up on her dream and kept a chilled bottle of champagne in her office every year in case she won the Nobel Prize. In 1977, that dream came true when she was awarded the Nobel Prize in Physiology or Medicine for her work in endocrinology.

We all face obstacles, and Rosalyn is a prime example of how we should not give up on chasing our dreams. In her own words, “we must believe in ourselves or no one else will believe in us; we must match our aspirations with the competence, courage, and determination to succeed.”


To learn more about Rosalyn:

Women in Science: 50 Fearless Pioneers Who Have Changed the World, Rachel Ignotofsky

Scientist Spotlight: Rita Levi-Montalcini

Researching for this blog post, I was first blown away by the number of reputable websites that came up after I Googled Rita Levi-Montalicini, but I was even more impressed by everything Rita accomplished.

Born April 22, 1909 in Italy to a wealthy Jewish family, Rita was raised in a Victorian way of life. Rita’s father, a notable mathematician and electrical engineer, loved his family dearly but also believed women’s roles were as mother and wives, not as professional workers. Rita, felt she could not live the expected feminine life and be enrolled in medical school in Turin. In 1936, at the age of 27, Rita graduated summa cum laude from the University of Turn medical school with a degree in Medicine and Surgery. She began a what was supposed to be a three-year specialization in neurology and psychiatry but this was cut short because of World War II. Due to her Jewish heritage, in 1938, Rita was barred from practicing medicine. However, this did not stop Rita in her quest for scientific greatness.

In the Spring of 1940, Rita set up a makeshift lab in her bedroom. Inspired by the work of Viktor Hamburger, she used sewing needles to dissect the nervous systems of embryonic chicks from the eggs she got from farmers. Even in these seemingly poor conditions from research, Rita could see the development of the motor neurons.

Viktor Hamburg ended up inviting Rita to work in his lab for a semester at Washington University in St. Louis in the United States in 1946. This “semester” turned in to 30 years of teaching a research, positions as Associate Professor and Full Professors, and dual citizenship with the United States and Italy.

In St. Louis, Rita and Stanley Cohen discovered the nerve growth factor (NGF) which is important in the growth and development of nerve cells and fibers in the peripheral nervous system. Although this discovery was not initially recognized and appreciated, the scientific community eventually realized all the possible cures that could come from growth factors.

Rita began missing her home country and in 1962, established the Institute of Cell Biology in Rome. From then on, she divided her time between Rome and St. Louis.

In 1986, Rita and Stanley won the Nobel Prize in Physiology and Medicine for their work with NGF and in 1987 Rita was awarded the National Medal of Science. Rita’s work did not stop here, however. In 1992 Rita started an education foundation and in 2001 was named an Italian Senator for Life for her work toward equality and contributions to science. A year later, in 2002, Rita established the European Brain institute.

Pope Paul VI appointed Rita to the Pontifical Academy of Sciences and instead of kissing the Holy Father’s hand as per protocol, Rita simply shook it.

As a woman who never gives up, Rita performed research until her death at the age of…. wait for it….103! Never letting anything stop her, once when her luggage was lost she lectured in a pressed nightgown and she even brought lab mice onto a plane to continue her research.

I don’t even know how to end this post but WOW. Rita was truly an inspiration and someone who stood tall in the face of adversity. She knew what she wanted and who she was and did not let anyone make her think otherwise. I am glad I got to meet her through writing this blog post. I will end with one of her quotes and something we all need to remember, “Above all, don’t fear difficult moments. The best comes from them.”


For more about Rita’s amazing and long life:

Women in Science: 50 Fearless Pioneers Who Have Changed the World, Rachel Ignotofsky

Scientist Spotlight: Maria Agnesi

How many people have a mathematical curve named after them? Let me rephrase that, how many women have a mathematical curve named after them? I don’t know but I do know that Maria Gaetana Agnesi is one of these people. And guess what? Today is her birthday!

Born in Italy on May 16, 1718, she was the oldest of 21 children (her father had three wives). Because her father was a wealthy man, he was able to provide his children with the best of tutors.

Maria was lucky that she lived in the birthplace of the Renaissance because in Italy women were admired for their academic ability and were never scorned for their intellect. This attitude allowed Maria to prosper and eventually become a great mathematician.

By the age of nine Maria fluently spoke French (which she mastered at age five!), Greek, Hebrew, Latin, and other modern languages. She was known as a child prodigy and referred to as the “oracle of the seven tongues.” Also at the age of nine, she wrote and published (with the help of her tutor) a Latin discourse on the higher education of women as it was not practiced at the time.

Maria was a quiet and reserved child, but participated in the seminars and meetings of intellectuals that her father hosted. There she discussed philosophical and mathematical ideas. At the age of twenty, however, after her mother’s death, Maria took over the household duties and maintained a private life.  At the same time, she published a set of essays on philosophy and natural science called “Propositiones Philosophicae.” Much of it was based on the meetings she attended with her father.

Her most important work, a two volume book entitled “Analytical Institutions”, focused on differential and integral calculus. It was meant to be a textbook for her brothers but ended up making big waves in the world of academia. The ten years it took Maria to write it paid off because it helped bring “calculus to general use” (John H. Lienhard) and “was one of the first and most complete works on finite and infinitesimal calculus” (Agnes Scott College).


Drawing the “Witch of Agnesi” curve

Most people don’t hear of Maria Agnesi, rather they hear of the “Witch of Agenis”, her famous curve. If you look at the curve, there is nothing sinister about it. It is a versed sine curve called a versiera for the Latin vetere which means “to turn.” However, versiera was also an abbreviation for the Italian word avversiera which means “wife of the devil.” When versiera was translated into English it got confused with “witch.” If you want to learn more about this curve check out They can explain it better than I ever could wish.

May notable institutions recognized Maria Agnesi for her work. Maria was appointed as an honorary reader at the University of Bologna by Pope Benedict XIV. She was later sent a diploma and her named was added to the faculty list but there is controversy regarding if she accepted the position. Maria also became a member of the Bologna Academy of Science and the French Academy expressed their admiration but could not admit her because she was a woman.

Once Maria’s father died, she retired from mathematics to pursue charity work. Growing up she wanted to enter the covenant, but her father would not allow it. So, she spent his life making contributions to mathematics and then the rest of her life after his death taking care of the ill and dying. Some may argue that she only really worked with mathematics to please her father and that her real passion lied in charity.  In 1763, the University of Turn asked her for her opinion on recent articles on the calculus of variations she explained she was no longer interested in such topics. Maria was appointed the director of the Pio Instituto Trivulzo, a home for the ill, and served the needy until her death.

For more about Maria:

Scientist Spotlight: Mileva Einstein-Maric

Anyone could tell you who Albert Einstein is. School children know his equation  without even knowing what the letters mean. Einstein has become synonymous with genius. I mean, there was even a TV show “Little Einsteins”! But contrary to what you may be thinking this post isn’t about Einstein, at least not Albert. This post is highlighting the less popular but equally important Einstein: Mileva Einstein-Maric. She was his first wife and had no blood relations to him, unlike his second wife who is justifiably pointed out to be his double-first cousin.

Mileva was born in 1875 in Austria-Hungary (present-day Serbia). Coming from a wealthy family, Mileva’s father got permission for Mileva to enter an all-boys school where she received the highest grades possible in physics and mathematics. After falling ill, Mileva decided to move to Switzerland where she attended the “Girls High School” in Zurich. Once she passed the Matura-Exam, Mileva began studying medicine at the University of Zurich. However, she soon transferred to the Zurich Polytechnic where she met Albert Einstein. Mileva was the only women out of a group of six students for a physics-teaching course.

Initially, Mileva did well in her course but ended up failing the final teaching diploma exam because of the math part. Mileva worked harder and planned to retake the test but found out she was pregnant with Einstein’s baby. Three months into her pregnancy, she failed the exam again without any improvement to her score. Mileva ended up abandoning her studies and little is known about this daughter, Liserl. It is though the child died or was given up for adoption.

Albert and Mileva married in Swtizerland at a simple ceremony only witnessed by the original members of the Olympia Academy, Maurice Solovine and Conrad Habicht. The pair went on to have two sons but ended up divorcing after about 15 years. As part of their settlement, Mileva received all Albert’s Nobel Prize money and invested it in real estate.

However, throughout their marriage Mileva remained an asset to Albert. She discussed his papers with him and possibly contributed to many of his theories. There is a lot of controversy surrounding how much Mileva actually worked with Albert to develop his famous works. Was she truly a part of the process? Or was she just a wife supporting her husband? Scholars have speculated this for years and continue to examine their correspondence and relationship. Whether she directly contributed or not, Mileva and Albert both shared a deep love of physics and math. They must have bounced around ideas with each other and she probably influenced some of his ideas.  She was a very smart woman who might just have gotten too caught up in love to complete her degree, but I think she deserves a lot of credit. Perhaps she had the ability to do more but was caught in her husband’s shadow.

More about Einstein’s first wife:

Scientist Spotlight: Hyaptia

This blog post is going back in time, all the way to the 300s A.D. That’s right, I am going to be talking about Hypatia, “the Egyptian wise woman.” Born to Theon of Alexandria, a well-known scholar and one of the last members of the Library Alexandria, she learned a lot from her father. He instilled in her the importance of Greek culture and, being a mathematician and astronomer himself, placed a special emphasis on the mathematical and astronomical traditions.

Living in Alexandria allowed Hypatia to be surround herself with intellectuals. She worked with her father on theories about the solar system and she created a new version of the hydrometer.

Like her father who preserved Euclid’s Elements and commented on Ptolemy’s Almagest and Handy Tables, Hypatia gave commentaries on Apollonius of Perga’s Conics (geometry, Diophantus of Alexandria’s Arithmetic (number theory), and an astronomical table. Unfortunately, her commentaries have been lost, though people have tried to reconstruct pieces of them.

Hypatia was on of the first recorded women to teach and study math. People traveled from all around to hear her lectures. One aspects of her teaching was Neoplatonism, a “pagan” view. I don’t want to get into the aspects of the philosophy here, but due to the strong tensions between Christians, Jews, and Pagans at the time, Hypatia was killed by a group of extreme Christians.

During Hypatia’s life, she was the world’s leading mathematician and astronomer. She is pictured in Raphael’s famous work “The School of Athens” and was mentioned in an ancient encyclopedia called the Suda. She has become a symbol for both the Enlightenment and Feminism.


In this numbered picture of “The School of Athens”, Hypatia is #9

Women in Science: 50 Fearless Pioneers Who Have Changed the World, Rachel Ignotofsky

Scientist Spotlight: Cori Bargmann

Cori Bragmann, born on New Year’s Day in 1961, grew up in Georgia. Her parents were both translators at the Nuremburg Trials. Her father went to graduate school in the United States and became a professor at the University of Georgia after working at IBM. Cori grew up in “an academic household.” Her family was always reading, writing, or playing music.

In junior high and high school, Cori’s favorite class was always science. Instead of going to the pep rallies, she would spend her time in the chemistry lab.  When she was 17, Cori worked in a laboratory making fly food.  The lab director took a liking to her and introduced Cori to Sidney Kushner in the Genetics Department. Cori ended up working in Kushner’s laboratory and studied bacterial genetics and RNA metabolism. She also learned about molecular biology. The work she did in the laboratory gave her a base for her future research.

Cori attended the University of Georgia and received her undergraduate degree in biochemistry before heading to the Massachusetts Institute of Technology (MIT) for graduate school. She entered MIT in 1981, just “as molecule genetics was exploding.” It was at MIT that Cori studied cancer cells in Bob Weinberg’s lab and was part of some big innovations in the field. Some of Cori’s research led to developments in the treatment of breast cancer.

In 1987 Cori received her Ph.D. from the Department of Biology and stayed at MIT to do some postdoctoral research. She started to do some work with the human nervous system. In 1991, Cori travelled cross-country to work in the Department of Anatomy at the University of California, San Francisco. She learned neuroscience here and studied worms. Though worms seem unhelpful to the study of human genetics, Cori is using them to analyze how the correlation between genes and behavior. Her work is leading her to discover the root causes of diseases like Alzheimer’s and autism.

Cori currently works is the Torsten N. Wiesel Professor in the Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior at Rockefeller University. She has won the Breakthrough Prize in Life Sciences and Franklin Institute Awards. Cori also began the Brain Research Advancing Innovative Neurotechnologies Initiative which is attempting to uncover what causes things like Alzheimer’s, autism, and depression.

To learn more about Cori:

Scientist Spotlight: Kira Larson

In June 2016 I attended the New Jersey Hugh O’Brien Youth Leadership Conference and one of the guest speakers was a bridge engineer by the name of Kira Larson. Kira’s talk captivated me and I saw a lot of her in myself, so I wrote her a thank you note at the end of the conference. Later, I connected with her on LinkedIn and we have been in contact ever since. She was even kind enough to let me visit her engineering firm, HNTB. I got to sit in on a meeting and get a glimpse of what a bridge engineer does. It was a very educational experience and made me seriously think of engineering as a future career path for myself.

I am currently taking a course called Principles of Engineering and one of our assignments was to interview an engineer. I chose to interview Kira and, being an editor on the school paper, I have to say she was an awesome interviewee! With her permission, I decided to publish the interview so all of you can read about her!

What is your specific degree and how does it relate to your current position? 

I have a Bachelor of Science in Civil and Environmental Engineering from Princeton (in 2008), and a Master of Science in Civil Engineering with an Emphasis on Structural Engineering from Columbia University (in 2009).  My position now is Structural Engineer at HNTB Corporation in Parsippany, NJ.  My degree is directly related to my work; structural engineering is really all based on physics and the forces in members, which was largely what my courses were about.  At both schools there was a big focus on designing structures to be efficient, economical and elegant, and I try to remember that every day at my job!

Pease explain your particular engineering field, your current job title, and your duties. 

My field of structural engineering is bridges; I design and detail new bridges and work to rehabilitate existing bridges.  My job title is Structural Engineer II, and I am responsible for performing calculations and choosing the materials and sizes of members needed to make a bridge stand up.  For a given project, I will work under what’s called a Project Manager, who manages the project as a whole, and I will supervise more junior engineers, who will check a lot of my work and perform smaller design tasks.  When we design a bridge, first we look at the geometry – e.g. how long does it need to be, is it straight or curved or skewed, how high does it need to be, and how much room do we have to build.  Then we design each member from the top down, starting with the beams and the deck, to the abutments that the beams sit on, to the foundations that hold the structure up below ground.  (If you remember my speech!) to make sure they will not fail when loaded by cars, trucks, impact from a vehicle accident, wind, earthquake, extreme temperatures, and more.  If you look under a typical NJ bridge, you’ll likely see a concrete deck sitting on steel beams, with smaller steel members called diaphragms spanning between the beams.  Every dimension of concrete and every piece of steel – from the width and depth and thickness of the beams, to the number of bolts connecting the diaphragms to the beams, to the amount of rebar inside the deck, is calculated by the engineer.  Once the design is complete, we put together a set of plans, which tells the contractor all of these sizes we’ve designed, and shows them how the bridge is supposed to be put together.  We also put together an estimate of all the materials used in the bridge, and how much it will cost, so that our client (some of our larger ones are the NJ Department of Transportation or the NJ Turnpike Association), can properly estimate how much the bridge will cost.  All these pieces come together in our submission, and then the project can be built!

 What is your average work schedule, what does your day look like?

The average schedule at my office is 8am to 5pm, with an hour for lunch, but the start and end times can vary.  Since my daughter was born a couple years ago, I’ve been lucky enough to be able to work part-time here, and spend more time with her at home.  I typically work 24 hours a week (Mon – Thurs from 9-3), but sometimes more as needed (like this week!).  My day is typically defined by a to-do list of items for the various projects I’m working on.  When a project first starts, it is largely about running calculations to get all the sizes we need.  Today, as I mentioned, we are working on finalizing our plan set for the bridges on I-80 and the designs are already complete.  So we are finishing drawing up different pieces of the bridges in CAD and making sure everything is shown in a way that a contractor will be able to use our plans and fully understand how to build every part of the structures.

 Starting with high school, please describe your educational background chronologically:

Ramsey High School, 2004

Princeton University, BS, 2008

Columbia University, MS, 2009

 Would you do anything differently if you had to start over?

I wouldn’t!  From a young age I loved math and loved problem-solving.  Today I get to do that every day at my job!  Because I was always passionate about those topics, I was able to enjoy the whole journey. 

 Finally, what advice would you give to me as someone interested in pursuing a career path similar to yours?  

The best advice I can give will sound familiar to you from HOBY – find your passion and start building that foundation!  So if you feel passionate about a career in engineering, start soaking up information, job shadow, and learn more about the field.  And also learn more about yourself, what do you love to do and in what setting do you do your best work (StrengthsFinder2.0 is a book I love for this!).   You don’t have to know all the answers today of what you want to do, but if you make decisions day by day that honor your passions, you will end up in the right place.  At first my major at Princeton was Mechanical and Aerospace Engineering, but I realized that I wasn’t excited about my courses, so I switched to Civil Engineering, and loved it.  Don’t feel stressed like you have to have it all figured out – wherever you go to school, if you make decisions with both your heart AND your mind, it will lead you to where you were meant to be.

I received a “Road Map to Success” from one of the Corporate leaders of my firm that I have hanging in my cubicle and has really inspired me, and I’d love to share it with you:

  1. Act with integrity ALWAYS
  • Be the same person at work, school, or home
  1. Be willing to do anything, anytime anywhere
  • Have a can-do attitude and never stop trying to discover and learn, choose every day to be a happy person as people will always want to be around you!
  1. Find and emulate successful people
  • Be a sponge
  1. Get involved in your community
  • Help others and begin building your relationship network
  1. Always be a hero at home
  • Spend quality time with family and keep your commitments
  1. Focus your career on creating value NOT money
  • Creates a strong work ethic and a success-oriented mindset
  1. Always read for self-improvement and growth
  • Expands your thinking and gives you great talking points
  1. Take responsibility for your career development
  • Find mentors, go after your goals, and do not expect others to be responsible
  1. Get outside your comfort zone
  • Challenge yourself
  1. Become a detailed note taker
  • Ability to repeat spoken information is powerful